
Scaling 
GraphQL 
subscriptions
Artjom Kurapov
Principal Software Engineer,
Engineering Platform



🛠 I develop in NodeJS / Go / PHP

🔨 Work on GraphQL for last 3 years

🌍 I focus on complexity, performance and scalability

🙏Open source maintainer - github.com/tot-ra

🤖 Interested in image recognition and

🐝 Beekeeping - github.com/Gratheon

Artjom Kurapov

https://github.com/tot-ra
https://github.com/Gratheon/web-app


Some examples you can 
use to start with

Code

Architecture

Why it makes product more efficient 

What they are replacing

What frontend can consume

How we now should be able 
to scale

Schema

Subscriptions

GraphQL

Complexity
Expect it to grow with 
every section

Questions
Ask at the end of every section 

Agenda

Time
ETA 50 min
70 slides





New York City

St. Pete

London

Dublin

Lisbon

Berlin

Prague

Tallinn

Tartu

Riga

About Pipedrive 🦄

100k
clients

offices

400
engineers

hosting regions
200
libraries

730
microservices

440k
rpm at peak

30
teams

10

5





Data synchronization / async event delivery



Why your business needs this?

Intuitive UX → 
Interactivity → 

Data consistency → 

Simplicity → Growth 🌳
Efficiency → Retention👏
Trust → Retention 👏



How? Pusher



How? Liveblocks



How? Firebase



Pipedrive (oversimplified) architecture



Why GraphQL?

Agenda



REST problems / schema documentation



Overfetching



Underfetching + request dependencies



Manual API composition

● Synchronous and slow
● Denormalized, Not really REST
● Complex and hard to maintain

○ Timeouts
○ Error handling
○ Conditional API joins - custom GET params
○ Redundant internal requests
○ N1 internal requests



Multiple API composition endpoints



API composition mission 🚀

Aleksander GasnaOleksandr Shvechykov

Artjom Kurapov Erik Schults

Make API efficient



Add GraphQL here 💡



Apollo federation



 

graphql-schema-registry service



graphql-query-cost library



13% decrease of initial 
pipeline page load 
5.4s → 4.7s)

25% decrease of cached request 
pipeline page load 5.4s → 4s)

Mission results



What about this part?



Why subscriptions?



Why is Pipedrive is consuming 
80GB traffic per day?

Before socketqueue traffic was compressed



Problems - denormalized undocumented schema



Problems - scalability



Problems - scalability with fixed queues

Socketqueue 1

Socketqueue 2

Socketqueue 3

queue 1

queue 2

queue 3

client 1

client 2

client 3

client 4



Problems - noisy neighbour → CPU → infra waste



Problems - reliability
Loss of events if RabbitMQ is down

Loss of frontend state if user connection is down



Proof of concept
● Websocket transport

● Apollo server / subscriptions-transport-ws



GraphQL subscriptions mission 🚀
Make events efficient

Kristjan LuikAbhishek Goswami

Artjom Kurapov Pavel Nikolajev



Scope
● Authentication

● Filtering + Limiting stream to specific user

● Routing

● Enrichment with timeouts

● Handle state on connection loss

● Test multiple subscriptions per view

● Testing scalability

● Testing performance. CPU, memory



Mission progress
- Tried graph-gophers/graphql-go
- Tried 99designs/gqlgen

- Ended up still with nodejs:
apollosolutions/federation-subscription-tools
enisdenjo/graphql-ws

Dynamic federated schema merging



Schema



Mini demo



Raw events
● Delivers data from kafka

● camelCase remapping

● Permission check

● Fast & most reliable



Delta field
● Subscribe & deliver only changed fields (diff)

● Relies on original event to have this data

● JSON type - no property usage tracking

● Frontend likely needs to query original entity first

● Useful if frontend has storage layer



Event types - Universal vs Domain Driven
● Both have filtering by IDs

● Universal - for FE storage sync

○ ORDER of events is important

● Custom - flexibility for specific views



Enriched events
● Allows deep enrichment

● Queries federated gateway

● Query is hard-coded

● Entity ID is taken from kafka event

● Useful if frontend has no 

unified storage layer (react views)



Live queries
● Query + Subscribe

● Async iterator magic



Architecture



Services



Scalability
● Workers scale to max amount of kafka partitions

● WS connections scale horizontally

● Redis CPU is the weakest spot

● For more efficiency, in the future, 

subscription state (users, ids)

could be passed to workers



Redis pub-sub channels
● We use high-availability redis sentinel

● Routing idea is similar to RabbitMQ, 

except there are no in-memory queues

● redis-cli -h localhost -p 6379

● > PUBLISH 123.deal.456 some-json-here

Company id
Entity type

                         Entity id



Performance testing
● One entity type ~ 200 events / sec

● Rolled out to 100% of customers

● Stress tested in live with 50 subscriptions per connection



Limitations
● Max amount of IDs per subscription

○ Redis channels per subscription
● Connection per user per pod

○ Subscriptions per connection
● Subscriptions per pod
● Enrichment request timeout
● Connection time to live
● Disconnect users

○ On logout
○ On permission change 

● Automatic reconnect (by graphql-ws)



Code



Transport



Server Sent Events over HTTP2 transport
● Only unidirectional data flow

● Basically a HTTP long polling on steroids - no HTTP connection closing when 

individual data item is sent, no need to explicitly re-establish connection

● Very simple to set up both client & BE

○ Built in support for re-connection and event id

● A text/event-stream with JSON payload separated by new line characters

● Adds 5 bytes per msg overhead

● Only UTF :(

● Over HTTP1, limited to 6 connections :(

● enisdenjo/graphql-sse lib could now be used - first commit Jun 22, 2021, after 

mission



Websocket transport
● Bi-directional full duplex (send at any time)

● HTTP 1.x upgrade header
○ Some old firewalls may deny this

● Sub-protocols & versions

● Binary Blob or UTF8 ArrayBuffer)

● Low-level, has many implementation libraries (we use sockjs in 

socketqueue)

● HTTPS pages require WSS

● Stateful connection

● Nginx needs long-lived connections, otherwise it dies after default 1 min



subscriptions-transport-ws
- Originally written by Apollo

- 🪦20162018



graphql-ws
- Easy adoption, has both frontend and backend examples

- Security

- ws payload must be compliant to the protocol, otherwise connection is dropped

- Connection/auth initialization is complete

- Allows to even send queries & mutations over ws
- Less auth overhead with long-running connection

- Automatic reconnect, exponential back-off

- Connection termination removed → ws equivalent

- Keep-alive ping-pongs can be customized



Frontend





Subscription (with generator function)





Subscription (with async iterator + promises)





Subscription (with in-memory pub-sub)





Subscription (with redis pub-sub)

import ws from 'ws';
import { RedisPubSub } from 'graphql-redis-subscriptions';

const wsServer = new ws.Server({
  server: fastify.server,
  path: '/graphql',
});

const redisSub = new RedisPubSub({
publisher: redisClient, // ioRedis instance
subscriber: redisClient,

});



Subscription with redis pub-sub

import { useServer } from 'graphql-ws/lib/use/ws';

useServer({
execute, // from 'graphql'
subscribe, // from 'graphql'
context: (ctx) => contextHandler(ctx),
onConnect: (ctx) => connectHandler(ctx, fastify, redisSub),
onDisconnect: (ctx: any) => {},
onClose: (ctx: any) => {},
onSubscribe: (ctx, msg) => subscribeHandler(ctx, fastify, msg),
onError: (ctx, message, errors) => {},

},
wsServer,

);

Connection limits, set 
redis to ctx

Setting datasources &
context from connection to 
resolvers



Subscription with redis pub-sub

  Subscription: {
    dealAdded: {
      subscribe: withFilter(
        () => ctx.redis.asyncIterator('123.deal.456'), // bind to redis channel
        (payload, variables) => {
          return true; // check permissions
        },
      ),

 
      async resolve(rawPayload, _, ctx, info) => {}, // enrich
    },
  },



Pipedrive engineering blog



Thank you!
Any questions? Contact me!

Some code is available in my pet project:
🐝 github.com/Gratheon/event-stream-filter
🐝 github.com/Gratheon/web-app

Artjom Kurapov
artkurapov@gmail.com

https://github.com/Gratheon/event-stream-filter
https://github.com/Gratheon/web-app

