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🛠 I develop in NodeJS / Go / PHP

🔨 Work on GraphQL for last 3 years

🌍 I focus on complexity, performance and scalability

🙏Open source maintainer - github.com/tot-ra

🤖 Interested in image recognition and

🐝 Beekeeping - github.com/Gratheon

Artjom Kurapov

https://github.com/tot-ra
https://github.com/Gratheon/web-app
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Data synchronization / async event delivery



Why your business needs this?

Intuitive UX → 
Interactivity → 

Data consistency → 

Simplicity → Growth 🌳
Efficiency → Retention👏
Trust → Retention 👏



How? Pusher



How? Liveblocks



How? Firebase



Pipedrive (oversimplified) architecture



Why GraphQL?

Agenda



REST problems / schema documentation



Overfetching



Underfetching + request dependencies



Manual API composition

● Synchronous and slow
● Denormalized, Not really REST
● Complex and hard to maintain

○ Timeouts
○ Error handling
○ Conditional API joins - custom GET params
○ Redundant internal requests
○ N1 internal requests



Multiple API composition endpoints



API composition mission 🚀

Aleksander GasnaOleksandr Shvechykov

Artjom Kurapov Erik Schults

Make API efficient



Add GraphQL here 💡



Apollo federation



 

graphql-schema-registry service



graphql-query-cost library



13% decrease of initial 
pipeline page load 
5.4s → 4.7s)

25% decrease of cached request 
pipeline page load 5.4s → 4s)

Mission results



What about this part?



Why subscriptions?



Why is Pipedrive is consuming 
80GB traffic per day?

Before socketqueue traffic was compressed



Problems - denormalized undocumented schema



Problems - scalability



Problems - scalability with fixed queues

Socketqueue 1

Socketqueue 2

Socketqueue 3

queue 1

queue 2

queue 3

client 1

client 2

client 3

client 4



Problems - noisy neighbour → CPU → infra waste



Problems - reliability
Loss of events if RabbitMQ is down

Loss of frontend state if user connection is down



Proof of concept
● Websocket transport

● Apollo server / subscriptions-transport-ws



GraphQL subscriptions mission 🚀
Make events efficient

Kristjan LuikAbhishek Goswami

Artjom Kurapov Pavel Nikolajev



Scope
● Authentication

● Filtering + Limiting stream to specific user

● Routing

● Enrichment with timeouts

● Handle state on connection loss

● Test multiple subscriptions per view

● Testing scalability

● Testing performance. CPU, memory



Mission progress
- Tried graph-gophers/graphql-go
- Tried 99designs/gqlgen

- Ended up still with nodejs:
apollosolutions/federation-subscription-tools
enisdenjo/graphql-ws

Dynamic federated schema merging



Schema



Mini demo



Raw events
● Delivers data from kafka

● camelCase remapping

● Permission check

● Fast & most reliable



Delta field
● Subscribe & deliver only changed fields (diff)

● Relies on original event to have this data

● JSON type - no property usage tracking

● Frontend likely needs to query original entity first

● Useful if frontend has storage layer



Event types - Universal vs Domain Driven
● Both have filtering by IDs

● Universal - for FE storage sync

○ ORDER of events is important

● Custom - flexibility for specific views



Enriched events
● Allows deep enrichment

● Queries federated gateway

● Query is hard-coded

● Entity ID is taken from kafka event

● Useful if frontend has no 

unified storage layer (react views)



Live queries
● Query + Subscribe

● Async iterator magic



Architecture



Services



Scalability
● Workers scale to max amount of kafka partitions

● WS connections scale horizontally

● Redis CPU is the weakest spot

● For more efficiency, in the future, 

subscription state (users, ids)

could be passed to workers



Redis pub-sub channels
● We use high-availability redis sentinel

● Routing idea is similar to RabbitMQ, 

except there are no in-memory queues

● redis-cli -h localhost -p 6379

● > PUBLISH 123.deal.456 some-json-here

Company id
Entity type

                         Entity id



Performance testing
● One entity type ~ 200 events / sec

● Rolled out to 100% of customers

● Stress tested in live with 50 subscriptions per connection



Limitations
● Max amount of IDs per subscription

○ Redis channels per subscription
● Connection per user per pod

○ Subscriptions per connection
● Subscriptions per pod
● Enrichment request timeout
● Connection time to live
● Disconnect users

○ On logout
○ On permission change 

● Automatic reconnect (by graphql-ws)



Code



Transport



Server Sent Events over HTTP2 transport
● Only unidirectional data flow

● Basically a HTTP long polling on steroids - no HTTP connection closing when 

individual data item is sent, no need to explicitly re-establish connection

● Very simple to set up both client & BE

○ Built in support for re-connection and event id

● A text/event-stream with JSON payload separated by new line characters

● Adds 5 bytes per msg overhead

● Only UTF :(

● Over HTTP1, limited to 6 connections :(

● enisdenjo/graphql-sse lib could now be used - first commit Jun 22, 2021, after 

mission



Websocket transport
● Bi-directional full duplex (send at any time)

● HTTP 1.x upgrade header
○ Some old firewalls may deny this

● Sub-protocols & versions

● Binary Blob or UTF8 ArrayBuffer)

● Low-level, has many implementation libraries (we use sockjs in 

socketqueue)

● HTTPS pages require WSS

● Stateful connection

● Nginx needs long-lived connections, otherwise it dies after default 1 min



subscriptions-transport-ws
- Originally written by Apollo

- 🪦20162018



graphql-ws
- Easy adoption, has both frontend and backend examples

- Security

- ws payload must be compliant to the protocol, otherwise connection is dropped

- Connection/auth initialization is complete

- Allows to even send queries & mutations over ws
- Less auth overhead with long-running connection

- Automatic reconnect, exponential back-off

- Connection termination removed → ws equivalent

- Keep-alive ping-pongs can be customized



Frontend





Subscription (with generator function)





Subscription (with async iterator + promises)





Subscription (with in-memory pub-sub)





Subscription (with redis pub-sub)

import ws from 'ws';
import { RedisPubSub } from 'graphql-redis-subscriptions';

const wsServer = new ws.Server({
  server: fastify.server,
  path: '/graphql',
});

const redisSub = new RedisPubSub({
publisher: redisClient, // ioRedis instance
subscriber: redisClient,

});



Subscription with redis pub-sub

import { useServer } from 'graphql-ws/lib/use/ws';

useServer({
execute, // from 'graphql'
subscribe, // from 'graphql'
context: (ctx) => contextHandler(ctx),
onConnect: (ctx) => connectHandler(ctx, fastify, redisSub),
onDisconnect: (ctx: any) => {},
onClose: (ctx: any) => {},
onSubscribe: (ctx, msg) => subscribeHandler(ctx, fastify, msg),
onError: (ctx, message, errors) => {},

},
wsServer,

);

Connection limits, set 
redis to ctx

Setting datasources &
context from connection to 
resolvers



Subscription with redis pub-sub

  Subscription: {
    dealAdded: {
      subscribe: withFilter(
        () => ctx.redis.asyncIterator('123.deal.456'), // bind to redis channel
        (payload, variables) => {
          return true; // check permissions
        },
      ),

 
      async resolve(rawPayload, _, ctx, info) => {}, // enrich
    },
  },



Pipedrive engineering blog



Thank you!
Any questions? Contact me!

Some code is available in my pet project:
🐝 github.com/Gratheon/event-stream-filter
🐝 github.com/Gratheon/web-app

Artjom Kurapov
artkurapov@gmail.com

https://github.com/Gratheon/event-stream-filter
https://github.com/Gratheon/web-app

